Introdution to Physical Cryptanalysis ASK 2014

Victor LOMNE ANSSI (French Network and Information Security Agency) Saturday, December $20^{\it th}$, 2014

Agenda

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Agenda

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Context

■ Since the 90's, increasing use of secure embedded devices

▶ 8G smartcard ICs sold in 2012 (SIM cards, credit cards ...)

Strong cryptography from a mathematical point of view used to manage sensitive data

► AES, RSA, ECC, SHA-3 ...

Secure Embedded devices

- Functionalities:
 - ▶ secure boot
 - secure storage & execution of code in confidentiality & integrity
 - secure storage of sensitive data in confidentiality & integrity
 - secure implementation of crypto operations

 \blacksquare Small set of commands \Rightarrow reduce the Attack Surface

Examples of Secure Embedded Devices

- Smartcards (credit cards, USIM, e-passports ...)
- Trusted Platform Modules (TPM)
- Smartphone secure elements
- Hard disk drives with HW encryption
- Set-Top Boxes
- Hardware Security Modules (HSM)
- Wireless sensors network

. . . .

Agenda

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Classical Cryptography

Black-Box Model assumed in classical cryptography:

- key(s) stored in the device
- cryptographic operations computed inside the device

The attacker has only access to pairs of plaintexts / ciphertexts.

Secure Cipher - Unsecure Implementation (1/2)

• [Kocher] (1996) \Rightarrow exploitation of physical leakages

- cryptosystems integrated in CMOS technology
- physical leakages correlated with computed data

The attacker has also access to physical leakages
 New class of attacks ⇒ Side-Channel Attacks (SCA)

Secure Cipher - Unsecure Implementation (2/2)

■ [Boneh et al.] (1997) \Rightarrow exploitation of faulty encryptions

▶ the attacker can generate faulty encryptions

the attacker has access to correct & faulty ciphertexts
 New class of attacks ⇒ Fault Attacks (FA)

Agenda

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Side Channel Cryptanalysis

SCA consist in measuring a physical leakage of a device when it handles sensitive information

e.g. cryptographic keys

Handled info. are correlated with the physical leakage

▶ e.g. a register leaking as the Hamming Weight of its value

The attacker can then apply statistical methods to extract the secret from the measurements

- Simple Side-Channel Attacks (SSCA)
- Differential Side-Channel Attacks (DSCA)
- Template Attacks (TA)
- Collision-based Side-Channel Attacks
-

Introduction|

Side Channel Attacks (SCA) Fault Attacks (FA) | Combined Attacks | Protections |

Side Channels Cryptanalysis Techniques | SCA on Commercial Products |

Agenda

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

a. Side Channels

- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Physical Leakages exploited by SCA

- Timing Attacks (CRYPTO 96) [Kocher] exploit the computational time of cryptographic operations
- Power Analysis (CRYPTO 99) [Kocher et al.] exploit the power consumption of the IC
- ElectroMagnetic Analysis (CHES 01) [Gandolfi et al.] exploit the electro-magnetic radiations of the IC
- Acoustic Cryptanalysis (2004) [Shamir]
 exploit the sound emitted by the IC
- Light Emission Analysis (CHES 10) [Di Battista et al.] exploit the light emission of the IC

Measuring the Power Consumption of an IC (1/2)

- Different means:
 - shunt resistor
 - current probe
 - b differential probe
- \blacksquare Optional: Low Noise Amplifier \rightarrow amplify the signal

Cost: low

Measuring the Power Consumption of an IC (2/2)

- The IC can filter the current switching
- The IC can be mounted on complex boards !!!
 - Where is the power supply pin ?
 - ▶ There is sometimes several power supply pins ...

Measuring the EM Radiations of an IC (1/3)

- When an IC is computing, current flows through the different metal layers to supply the gates.
- Maxwell equations ⇒ current flowing through each metal rails creates an ElectroMagnetic field

Measuring the EM Radiations of an IC (2/3)

Electromagnetic sensor:

- made of several coils of copper
- \blacktriangleright diameter of coils \rightarrow spatial precision
- \blacktriangleright number of coils \rightarrow increase the gain

 \blacksquare Mandatory: Low Noise Amplifier \rightarrow amplify the signal

Cost: low / medium

Measuring the EM Radiations of an IC (3/3)

■ Examples of hand-made / commercial EM sensors:

Digitizing the Side Channel Signal

- Oscilloscope:
 - frequency bandwidth
 - sampling rate
 - vertical sensibility
 - precision of digitizing
 - number & memory of channels
- Cost: medium / high

Triggering the Record

- Mechanism allowing to trig the record of the signal just before the beginning of the targeted operation
 - could be based on the sending of the command
 - could be generated by a test code running on the IC
- Most oscilloscopes have triggering capabilities
- Custom readers / electronic boards allow to communicate with the device & provide trigger capabilities

Side Channels Cryptanalysis Techniques | SCA on Commercial Products |

Example 1 - AES encryption on a smartcard chip

Side Channels Cryptanalysis Techniques | SCA on Commercial Products |

Example 2 - AES encryption on a FPGA

Side Channels Cryptanalysis Techniques | SCA on Commercial Products |

Example 3 - Internal Authenticate on a smartcard

Agenda

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Some Pre-Processing Techniques

- Signal Processing Techniques
 - (smart) filtering
 - Resynchronization

- Dimension Reduction Techniques (research of Points Of Interest - POI)
 - Signal-to-Noise-Ratio (SNR)
 - Variance
 - Principal Component Analysis (PCA)

Resynchronization - Example (1/3)

Resynchronization - Example (2/3)

Resynchronization - Example (3/3)

Generic SCA Flow

- 1. Collect N side channel traces w. known inputs $t_1 \rightarrow Enc(p_1, k), \ldots, t_N \rightarrow Enc(p_N, k)$
- 2. Choose sensitive variable depend. on input & secret e.g. AES Sbox output $\to v_i^{\hat{k}} = S(p_i \oplus \hat{k})$
- 3. Choose a Leakage Model
 - e.g. Hamming Weight (H)
- 4. Compute predictions for each key hypothesis $\hat{k} = 0 \quad \rightarrow H(v_1^{\hat{k}=0}), \dots, H(v_N^{\hat{k}=0})$

$$\hat{k} = 255
ightarrow H(v_1^{\hat{k}=255}), \dots, H(v_N^{\hat{k}=255})$$

5. Use a distinguisher to discriminate the correct key by comparing the N traces and the predictions

SCA flow and Leakage Model: 3 cases

- 1. Select a priori a Leakage Model
 - Hamming Weight, Hamming Distance
 - ▶ Used in classical SCA (DPA, CPA, MIA, ...)
- 2. Select a priori a space of Leakage Models
 - ▶ Attack will *guess* the correct model in selected space
 - Used in Linear Regression Attack (LRA)
- 3. Infer a Leakage Model through profiling before attack
 - A preliminary step is performed on an open copy of the device to build a leakage model for each key value
 - Used in Template Attack (TA)

Some Side Channel Attack Techniques (1/2)

Simple Power Analysis (SPA) (CRYPTO 99) - [Kocher et al.] exploit one power trace to retrieve the key

- Differential Power Analysis (DPA) (CRYPTO 99) [Kocher et al.] exploit several power traces to retrieve the key
- Big Mac Attack (CHES 01) [Walter]

extract private key from single exponentiation trace

- Template Attack (TA) (CHES 02) [Chari et al.] build a dictionnary for all key values and use it to guess unknown key
- Collision based SCA (FSE 03) [Schramm et al.] exploit a collision between two leakages

Side Channels| Cryptanalysis Techniques SCA on Commercial Products|

Some Side Channel Attack Techniques (2/2)

- Correlation Power Analysis (CPA) (CHES 04) [Brier et al.] similar to DPA with Pearson correlation
- Stochastic Attacks (CHES 05) [Schindler et al.] retrieve the key and the leakage model through profiling
- Horizontal Correlation Analysis (ICICS 10) [Clavier et al.] perform CPA on a single RSA exponentiation
- Collision-Correlation based SCA (CHES 10) [Moradi et al.] compute a correlation between collisions
- Linear Regression Analysis (LRA) (JCEN 12) [Doget et al.] similar to stochastic attack without profiling

Some Side Channel Distinguishers

- Difference of Means (CRYPTO 99) - [Kocher et al.]
- Maximum Likelihood (CHES 02) - [Chari et al.]
- Pearson Correlation (CHES 04) - [Brier et al.]
- Mutual Information (CHES 07) - [Gierlichs et al.]
- Student T-Test (ICISC 08) - [Standaert et al.]
- Magnitude Squared Coherence
- Kolmogorov-Smirnov Test

- (ePrint 11) [Dehbaoui et al.]
- (CARDIS 11) [Whitnall et al.]

Some Post-Processing Techniques

- Partial Brute-Force Attack
 - Require one pair of plaintext/ciphertext

- Key Enumeration Algorithms (KEA)
 - Require one pair of plaintext/ciphertext
 - ▶ SCA rank subkey values from the most likely to the less
 - ▶ KEA enumerates keys from this information
 - KEA = smart brute-force attack

Example: SPA on RSA

Introduction|

Side Channel Attacks (SCA) Fault Attacks (FA) | Combined Attacks | Protections |

Side Channels| Cryptanalysis Techniques| SCA on Commercial Products

Agenda

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Side Channels| Cryptanalysis Techniques| SCA on Commercial Products

SCA on Commercial Products (1/4)

■ KEELOQ (MICROCHIP)

- On the Power of Power Analysis in the Real World: A Complete Break of the KEELOQ Code Hopping Scheme (CRYPTO 08) [Eisenbarth et al.]
- Proprietary NLFSR-based block cipher implemented in
 - HCSXXX memory modules (HW implem.)
 - PIC microcontrollers (SW implem.)
- Used in remote keyless entry systems (garage door openers, car anti-theft systems)
- Successfull CPA attack in 10 traces
- Extraction of the manufacturer key

Side Channels| Cryptanalysis Techniques| SCA on Commercial Products

SCA on Commercial Products (2/4)

MIFARE DESFire (NXP)

 Breaking Mifare DESFire MF3ICD40: Power Analysis and Templates in the Real World

- ▶ Contactless smartcard with HW 3DES co-processor
- Used for access control or public transport
- Successfull CPA attack in 250k traces
- Allow to clone the card
- NXP has discontinuited the product

⁽CHES 11) [Oswald et al.]

Side Channels| Cryptanalysis Techniques| SCA on Commercial Products

SCA on Commercial Products (3/4)

■ Virtex II PRO (XILINX)

 On the Vulnerability of FPGA Bitstream Encryption against Power Analysis Attacks: Extracting Keys from Xilinx Virtex-II FPGAs

(CCS 11) [Moradi et al.]

- ▶ FPGA (SRAM) with HW 3DES co-processor
- Used for bitstream encryption
- Successfull CPA attack in 25k traces
- Allow to clone/modify the bitstream

Side Channels| Cryptanalysis Techniques| SCA on Commercial Products

SCA on Commercial Products (4/4)

ProASIC3 (ACTEL/MICROSEMI)

- In the Blink of an Eye: There Goes your AES key (ePrint 12) [Skorobogatov et al.]
- ▶ FPGA (FLASH) with HW AES co-processor
- Used for bitstream encryption
- Use of a custom acquisition setup
- Successfull Pipeline Emission Analysis (PEA) in 0.01s
- Allow to clone/modify the bitstream

Agenda

1 Introduction

Side Channel Attacks (SCA) 2

3 Fault Attacks (FA)

Combined Attacks

Fault based Cryptanalysis

FA consist in perturbing the execution of the cryptographic operation in order to get faulty results

Hypotheses are made on:

- the targeted intermediate value (IV)
- the effect of the injection on the IV

The attacker can then apply algorithmic methods to extract the secret from the obtained results (correct and/or faulty)

Fault Injection Means

Cryptanalysis Techniques| Real World Attacks|

Agenda

1 Introduction

Side Channel Attacks (SCA)

3 Fault Attacks (FA)

a. Fault Injection Means

Combined Attacks

Fault Injection Means

- Different means to inject a fault inside an IC:
 - Inject a power glitch on the VCC of the IC
 - Tamper the clock signal of the IC
 - Inject a light beam inside the IC
 - Inject an EM field inside the IC

- Fault Injection Effects
 - Different effects when injecting a fault inside an IC:
 - Set/reset/flip a bit stored inside a register or a memory
 - Modify a value transiting on a bus
 - Modify the current executed opcode
 - Modify a current operand

Fault Injection Means Cryptanalysis Techniques | Real World Attacks

Power glitch

- Principle: under/over supply a device during a very short time
- Low-cost attack
- Well known technique at the golden age of pay-TV smartcard hackers
- Modern secure devices (e.g. smartcards) are protected against this attack path power pins filter the current to prevent under/over-powering

Tamper the clock

Principle: reduce the clock period at the clock cycle you want to disturb the device

Low-cost attack

Modern secure devices (e.g. smartcards) are protected against this attack path they generate their own clock internally

Fault Injection Means Cryptanalysis Techniques | Real World Attacks

ElectroMagnetic Injection (EMI)

- Principle: inject an electromagnetic field inside the device to disturb it
- EMI sensor is made of several coils of wire similar to SCA FM sensors
- A high power pulse generator is necessary to generate the power spike injected in the sensor

Light Injection

- Principle: inject a light beam inside the device to disturb it
- Modern methods are based on laser
- It requires to open the device remove the package of the chip
- Laser attacks very powerful and difficult to thwart
- Countermeasures: light sensors

Combined Attacks| Protections|

Fault Injection Means | Cryptanalysis Techniques

Real World Attacks

Agenda

1 Introduction

Side Channel Attacks (SCA)

Fault Attacks (FA) 3

- b. Cryptanalysis Techniques

Combined Attacks

Fault Injection Means | Cryptanalysis Techniques

Real World Attacks

Fault Attack Techniques

■ Differential Fault Analysis (DFA) (CRYPTO 97) - [Shamir et al.]

- require to encrypt/sign two times the same message
- require to have one or several pairs of correct/wrong ciphertext/signature corresponding to the same message
- Safe Error Attack (SEA)
 - require to encrypt/sign two times the same message
 - similar to Template Attacks, they require an copy of the target device that the adversary can fully controls

Statistical Fault Attack

(FDTC 13) - [Fuhr et al.]

- work even with a set of faulty ciphertexts corresponding to different unknown plaintexts
- require a Fixed Fault Logical Effect

Fault Injection Means | Cryptanalysis Techniques

Real World Attacks

Classification of Fault Models

One can define a Fault Model as a function f such that:

 $f: x \to x \star e$ (1)

x target variable, e fault logical effect and \star a logical operation

- Any Fault-based Cryptanalysis requires an Invariant \Rightarrow new classification of FA based on the Invariant:
 - FA based on a Fixed Fault Diffusion Pattern DFA - e.g. [Piret+ 2003], [Mukhopadhyay+ 2009] ...
 - FA based on a Fixed Fault Logical Effect Safe Error Attacks, Statistical Fault Attacks

Fault Injection Means| Cryptanalysis Techniques

Real World Attacks

Example: FA on RSA CRT

Consider a RSA CRT implementation, with

- N = p.q the public modulous
- \triangleright e and d the public and private exponents s.t. $e.d = 1 \mod(\phi(N))$

 \blacksquare The adversary generates two RSA signatures S and \hat{S}

- $S = M^d \mod N$, a correct signature
- $\tilde{S} = M^d \mod N$, a faulted signature
- **The adversary can then factorize** N to get p and q with $qcd(S - \tilde{S}, N) = q$

Fault Injection Means| Cryptanalysis Techniques| Real World Attacks

Agenda

1 Introduction

Side Channel Attacks (SCA)

Fault Attacks (FA) 3

- c. Real World Attacks

Combined Attacks

Fault Injection Means| Cryptanalysis Techniques| Real World Attacks

Bug Attack

- Pentium FDIV bug was a bug in the Intel P5 Pentium floating point unit (FPU)
- Because of the bug, the processor would return incorrect results for many calculations
- Nevertheless, bug is hard to detect 1 in 9 billion floating point divides with random parameters would produce inaccurate results
- Shamir proposed a modified version of the Bellcore attack which exploits this bug to retrieve a RSA private key
- More dangerous than a classical fault attack because can be perfomed remotely

Fault Injection Means| Cryptanalysis Techniques| Real World Attacks

PS3 Hack

- George Hotz (a.k.a. Geohot) published in 2009 a hack of the Sony PS3
- The otherOS functionnality of the PS3 allows to boot a Linux OS
- A bus glitch allows him to gain control of the hypervisor \Rightarrow ring 0 access
 - \Rightarrow full memory access
- In consequence Sony took George Hotz to court
- Sony and Hotz had settled the lawsuit out of court, on the condition that Hotz would never again resume any hacking work on Sony products

Outline

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Combined Attacks: Use Case

Consider a cryptographic implementation secured by:

- ▶ a masking scheme such that SCA are unpracticable
- ▶ a duplication countermeasure to avoid FA

- Is such an implementation really secure ?
 - ▶ If one takes each attack path alone yes !
 - ▶ But if one mixes both attack paths . . .

Outline

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Combined Attacks: Principle

Combined Attacks exploit the side-channel leakage of a faulty encryption to bypass both SCA and FA CM

Examples:

- Combined Attack of [Clavier+ 2010] targets 1st order masked AES implementation
- Combined Attack of [Roche+ 2011] targets any masked AES implementation
- Combined Attack of [Giraud+ 2013] targets a protected RSA implementation
- Interestingly enough, up to now only FA based on a Fixed Fault Logical Effect have been extended to CA

Use Case| Principle

Example: Combined Attack of [Roche+ 2011]

- Encrypt N plaintexts $P_1 \dots P_N$ and keep the N ciphertexts $C_1 \dots C_N$
- Encrypt the N plaintexts once again by injecting a fault during the penultimate round of the Key-Schedule and record the leakage traces $\Omega_1 \dots \Omega_N$
- Exploit the side-channel leakage of the faulty ciphertext:

 $egin{aligned} m{k} = argmax(
ho(HW(SB(SB^{-1}(C^i_j\oplus \hat{k})\oplus \hat{e}_9)\oplus \hat{k}\oplus \hat{e}_{10}),\Omega_i))) \end{aligned}$

The attack will work if the fault has the effect of a XOR with a non negligible rate

Protections

SCA Protections FA Protections

Outline

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

5 Protections

a. SCA Protections

- b. FA Protections
- c. Certification

Protections SCA Protections

FA Protections

Hardware level

- Add noise
 - > jittered clock
 - noise generator
 -
- Balance/Randomize leakage
 - Balanced Dual Rail Logic
 - Masked/Random Dual Rail Logic
 - Asynchronous Logic

SCA Protections FA Protections

Algorithmic Level

- Random delay insertion
- Dummy instruction/operation insertion
- Schuffling operations
- Masking techniques
 - boolean masking
 - arithmetic masking
 - exponent blinding

• • • •

FA Protections

Outline

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Protections

SCA Protections | FA Protections

Hardware level

Analog level

- > jittered clock
- glitch detector
- light detector
- ►

Digital level

- Redundant Logic
- Store a value and its complementary
- Error Detecting Codes
- •

SCA Protections | FA Protections

Algorithmic Level

- Random delay insertion
- Dummy instruction/operation insertion
- Schuffling operations
- Redundancy techniques
- Infection techniques

ections|

Outline

1 Introduction

- a. Embedded Systems
- b. Security Models

2 Side Channel Attacks (SCA)

- a. Side Channels
- b. Cryptanalysis Techniques
- c. SCA on Commercial Products

3 Fault Attacks (FA)

- a. Fault Injection Means
- b. Cryptanalysis Techniques
- c. Real World Attacks

4 Combined Attacks

- a. Use Case
- b. Principle

- a. SCA Protections
- b. FA Protections
- c. Certification

Certification Schemes

Procedure to evaluate the security level of a product

Three actors: the developper / the security lab / the scheme

- Some certification schemes:
 - Common Critera
 - EMVCo
 - CSPN
 - ▶

ections|

Questions ?

contact: victor.lomne@ssi.gouv.fr

